1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//! Implementation of the hash-based multi-use OPPRF of Kolesnikov, Matania,
//! Pinkas, Rosulek, and Trieu (cf. <https://eprint.iacr.org/2017/799>).
use crate::{
errors::Error,
oprf::{Receiver as OprfReceiver, Sender as OprfSender},
};
use rand::{CryptoRng, Rng};
use scuttlebutt::{AbstractChannel, Aes128, Block, Block512, SemiHonest};
use std::collections::HashSet;
mod cuckoo;
impl From<cuckoo::Error> for Error {
fn from(e: cuckoo::Error) -> Error {
Error::Other(format!("Cuckoo hash error: {}", e))
}
}
// Number of times to iterate when creating the sender's hash table.
const N_TABLE_LOOPS: usize = 128;
// Hash `x` with key `k`, producing a result in the range `[0..range-1]`. We use
// the Davies-Meyer-esque single-block-length compression function
// under-the-hood, and we pre-key `k`.
#[inline(always)]
fn hash_input_keyed(k: &Aes128, x: Block, range: usize) -> usize {
let h = k.encrypt(x) ^ x;
(u128::from(h) % (range as u128)) as usize
}
// Hash `y` with key `k`, producing a result in the range `[0..range-1]`.
fn hash_output(k: Block, y: Block512, range: usize) -> usize {
let aes = Aes128::new(k);
hash_output_keyed(&aes, y, range)
}
// Hash `y` with pre-keyed `k`. Uses a Davies-Meyer-esque hash function.
//
// XXX: can we remove this re-keying? It'll speed things up a bunch.
fn hash_output_keyed(k: &Aes128, y: Block512, range: usize) -> usize {
let ys: [Block; 4] = y.into();
let h = k.encrypt(ys[0]) ^ ys[0];
let k = Aes128::new(h);
let h = k.encrypt(ys[1]) ^ ys[1];
let k = Aes128::new(h);
let h = k.encrypt(ys[2]) ^ ys[2];
let k = Aes128::new(h);
let h = k.encrypt(ys[3]) ^ ys[3];
(u128::from(h) % (range as u128)) as usize
}
// OPPRF parameters.
#[derive(Debug)]
struct Parameters {
// The length of the "first" cuckoo hash table.
m1: usize,
// The length of the "second" cuckoo hash table.
m2: usize,
// The max bin size of the sender's "first" simple hash table.
beta1: usize,
// The max bin size of the sender's "second" simple hash table.
beta2: usize,
// The number of hashes used in the first hash table.
h1: usize,
// The number of hashes used in the second hash table.
h2: usize,
}
impl Parameters {
pub fn new(n: usize) -> Result<Self, Error> {
let (m1, m2, beta1, beta2, h1, h2) = if n <= 1 << 12 {
(1.17, 0.15, 27, 63, 3, 2)
} else if n <= 1 << 14 {
(1.15, 0.16, 28, 63, 3, 2)
} else if n <= 1 << 16 {
(1.14, 0.16, 29, 63, 3, 2)
} else if n <= 1 << 20 {
(1.13, 0.17, 30, 63, 3, 2)
} else if n <= 1 << 24 {
(1.12, 0.17, 31, 63, 3, 2)
} else {
return Err(Error::InvalidInputLength);
};
let m1 = ((n as f32) * m1).ceil() as usize;
let m2 = ((n as f32) * m2).ceil() as usize;
Ok(Self {
m1,
m2,
beta1,
beta2,
h1,
h2,
})
}
}
/// KMPRT hashing-based OPPRF sender.
///
/// This implements the hashing-based OPPRF sender in Figure 7 of the paper. It
/// uses the table-based one-time OPPRF under-the-hood (Figure 6 of the paper),
/// which itself uses an OPRF.
pub struct Sender<OPRF> {
oprf: OPRF,
}
impl<OPRF: OprfSender<Seed = Block512, Input = Block, Output = Block512> + SemiHonest>
Sender<OPRF>
{
/// Initialize the OPPRF sender.
pub fn init<C, RNG>(channel: &mut C, rng: &mut RNG) -> Result<Self, Error>
where
C: AbstractChannel,
RNG: CryptoRng + Rng,
{
let oprf = OPRF::init(channel, rng)?;
Ok(Self { oprf })
}
/// Run the OPPRF for `ninputs` inputs with the pairs given in
/// `points` as the programmed points.
pub fn send<C, RNG>(
&mut self,
channel: &mut C,
points: &[(Block, Block512)],
ninputs: usize,
rng: &mut RNG,
) -> Result<(), Error>
where
C: AbstractChannel,
RNG: CryptoRng + Rng,
{
let params = Parameters::new(ninputs)?;
// Receive `hashkeys` from the receiver. These are used to fill `bins` below.
let mut hashkeys = Vec::with_capacity(params.h1 + params.h2);
for _ in 0..params.h1 + params.h2 {
let h = channel.read_block()?;
let aes = Aes128::new(h);
hashkeys.push(aes);
}
// `bins` contains `m = m₁ + m₂` vectors. The first `m₁` vectors are each of
// size `β₁`, and the second `m₂` vectors are each of size `β₂`.
let mut bins = Vec::with_capacity(params.m1 + params.m2);
for _ in 0..params.m1 {
bins.push(Vec::with_capacity(params.beta1));
}
for _ in params.m1..params.m1 + params.m2 {
bins.push(Vec::with_capacity(params.beta2));
}
// Place each point in the hash table, once for each hash function.
for (x, y) in points.iter() {
let mut hs = Vec::with_capacity(params.h1);
for key in hashkeys[0..params.h1].iter() {
let h = hash_input_keyed(key, *x, params.m1);
// Only add the point if it doesn't already exist in the `h`th
// bin.
if hs.iter().find(|&&h_| h_ == h).is_none() {
bins[h].push((*x, *y));
hs.push(h);
}
}
let mut hs = Vec::with_capacity(params.h1);
for key in hashkeys[params.h1..params.h1 + params.h2].iter() {
let h = hash_input_keyed(key, *x, params.m2);
// Only add the point if it doesn't already exist in the `h`th
// bin.
if hs.iter().find(|&&h_| h_ == h).is_none() {
bins[params.m1 + h].push((*x, *y));
hs.push(h);
}
}
}
let seeds = self.oprf.send(channel, bins.len(), rng)?;
// Run the one-time OPPRF on each bin.
for (j, (bin, seed)) in bins.into_iter().zip(seeds.into_iter()).enumerate() {
// `beta` is the maximum number of entries a bin could have.
let beta = if j < params.m1 {
params.beta1
} else {
params.beta2
};
self.process_oprf_output(channel, seed, bin, beta, rng)?;
}
Ok(())
}
fn process_oprf_output<C, RNG>(
&mut self,
channel: &mut C,
seed: Block512,
points: Vec<(Block, Block512)>,
npoints: usize,
rng: &mut RNG,
) -> Result<(), Error>
where
C: AbstractChannel,
RNG: CryptoRng + Rng,
{
// Check that all input points are unique.
debug_assert_eq!(
{
let mut points = points.iter().map(|(x, _)| *x).collect::<Vec<Block>>();
points.sort();
points.dedup();
points.len()
},
points.len()
);
assert!(points.len() <= npoints);
let mut v = rng.gen::<Block>();
let mut aes = Aes128::new(v);
let mut map = HashSet::with_capacity(points.len());
// Store compute `y`s and `h`s for later use.
let mut ys = vec![Block512::default(); points.len()];
let mut hs = vec![usize::default(); points.len()];
// Guess a size for `table` using `offset`, and then try to fill
// `map` with points hashed into the space `[0..m-1]`. If this fails
// (because `m` is too small), we change `offset` and try again,
// looping until we choose an appropriate `m` such that we can find
// a `v` such that every entry in `map` is distinct.
//
// Note that choosing `m` correctly quickly matters **a lot** to the
// overall running time.
let mut m = Self::table_size(npoints);
let increment = m;
loop {
// Sample `v` until all values in `map` are distinct.
for _ in 0..N_TABLE_LOOPS {
for (i, (x, _)) in points.iter().enumerate() {
ys[i] = self.oprf.compute(seed, *x);
hs[i] = hash_output_keyed(&aes, ys[i], m);
if !map.insert(hs[i]) {
break;
}
}
if map.len() == points.len() {
break;
}
// Try again.
v = rng.gen::<Block>();
aes = Aes128::new(v);
map.clear();
}
if map.len() == points.len() {
// Success! Send `m` to the receiver and exit the loop.
channel.write_usize(m)?;
break;
}
// Failure :-(. Increment `offset` and try again.
m += increment;
}
let mut table = vec![Block512::default(); m];
// Place points in table based on the hash of their OPRF output.
for (h, (y_, (_, y))) in hs.into_iter().zip(ys.into_iter().zip(points.into_iter())) {
table[h] = y ^ y_;
}
// Fill rest of table with random elements.
for entry in table.iter_mut() {
if *entry == Block512::default() {
*entry = rng.gen::<Block512>();
}
}
// Send `v` and `table` to the receiver.
channel.write_block(&v)?;
for entry in table.iter() {
channel.write_block512(entry)?;
}
channel.flush()?;
Ok(())
}
// Compute the table size for the OPPRF.
#[inline(always)]
fn table_size(npoints: usize) -> usize {
// These are over-approximations, but appear to lead to better running
// times (at the expense of more communication).
if npoints <= 32 {
32
} else if npoints <= 64 {
256
} else {
(((npoints + 2) as f32).log2().ceil()).exp2() as usize
}
}
}
/// KMPRT oblivious programmable PRF receiver.
///
/// This implements the hashing-based OPPRF receiver in Figure 7 of the paper. It
/// uses the table-based one-time OPPRF under-the-hood (Figure 6 of the paper),
/// which itself uses an OPRF.
pub struct Receiver<OPRF: OprfReceiver + SemiHonest> {
oprf: OPRF,
}
impl<OPRF: OprfReceiver<Seed = Block512, Input = Block, Output = Block512> + SemiHonest>
Receiver<OPRF>
{
/// Initialize the OPPRF receiver.
pub fn init<C, RNG>(channel: &mut C, rng: &mut RNG) -> Result<Self, Error>
where
C: AbstractChannel,
RNG: CryptoRng + Rng,
{
let oprf = OPRF::init(channel, rng)?;
Ok(Self { oprf })
}
/// Run the OPPRF on inputs provided by the `inputs` slice.
pub fn receive<C, RNG>(
&mut self,
channel: &mut C,
inputs: &[Block],
rng: &mut RNG,
) -> Result<Vec<Block512>, Error>
where
C: AbstractChannel,
RNG: CryptoRng + Rng,
{
let params = Parameters::new(inputs.len())?;
let table;
// Generate random values to be used for the hash functions. We loop,
// trying random `hashkeys` each time until we can successfully build
// the cuckoo hash. Once successful, we send `hashkeys` to the sender so
// they can build their own (non-cuckoo) table.
loop {
let hashkeys = (0..params.h1 + params.h2)
.map(|_| rng.gen())
.collect::<Vec<Block>>();
// Build a cuckoo hash table using `hashkeys`.
if let Ok(table_) = cuckoo::CuckooHash::build(
inputs,
&hashkeys,
(params.m1, params.m2),
(params.h1, params.h2),
) {
table = table_;
// Send `hashkeys` to the sender.
for h in hashkeys.into_iter() {
channel.write_block(&h)?;
}
channel.flush()?;
break;
}
}
let mut outputs = (0..inputs.len())
.map(|_| Default::default())
.collect::<Vec<Block512>>();
let items = table
.items
.iter()
.map(|item| {
if let Some(item) = item {
item.entry
} else {
rng.gen::<Block>()
}
})
.collect::<Vec<Block>>();
let oprf_outputs = self.oprf.receive(channel, &items, rng)?;
let zero = Block512::default();
for (item, output) in table.items.into_iter().zip(oprf_outputs.into_iter()) {
let m = channel.read_usize()?;
let v = channel.read_block()?;
let h = hash_output(v, output, m);
let mut output = output;
for i in 0..m {
let entry = channel.read_block512()?;
output ^= if i == h { entry } else { zero };
}
if let Some(item) = item {
outputs[item.index] = output;
}
}
Ok(outputs)
}
}
//
// Tests.
//
#[cfg(test)]
mod tests {
use super::*;
use crate::oprf::{KmprtReceiver, KmprtSender};
use scuttlebutt::{AesRng, Channel};
use std::{
io::{BufReader, BufWriter},
os::unix::net::UnixStream,
};
fn _test_opprf_points(ninputs: usize, npoints: usize, npoints_bound: usize) {
assert!(ninputs <= npoints);
assert!(npoints <= npoints_bound);
let mut rng = AesRng::new();
let points = (0..npoints)
.map(|_| (rng.gen::<Block>(), rng.gen()))
.collect::<Vec<(Block, Block512)>>();
let xs = points[0..ninputs]
.iter()
.map(|(x, _)| *x)
.collect::<Vec<Block>>();
let ys = points[0..ninputs]
.iter()
.map(|(_, y)| *y)
.collect::<Vec<Block512>>();
let (sender, receiver) = UnixStream::pair().unwrap();
let points_ = points.clone();
let handle = std::thread::spawn(move || {
let mut rng = AesRng::new();
let reader = BufReader::new(sender.try_clone().unwrap());
let writer = BufWriter::new(sender);
let mut channel = Channel::new(reader, writer);
let mut oprf = KmprtSender::init(&mut channel, &mut rng).unwrap();
let _ = oprf
.send(&mut channel, &points_, ninputs, &mut rng)
.unwrap();
});
let mut rng = AesRng::new();
let reader = BufReader::new(receiver.try_clone().unwrap());
let writer = BufWriter::new(receiver);
let mut channel = Channel::new(reader, writer);
let mut oprf = KmprtReceiver::init(&mut channel, &mut rng).unwrap();
let outputs = oprf.receive(&mut channel, &xs, &mut rng).unwrap();
handle.join().unwrap();
let mut okay = true;
for j in 0..ninputs {
if ys[j] != outputs[j] {
okay = false;
}
}
assert_eq!(okay, true);
}
#[test]
fn test_opprf() {
_test_opprf_points(1, 8, 8);
_test_opprf_points(21, 48, 48);
_test_opprf_points(163, 384, 384);
// Settings for PSTY with `n = 2^8`.
_test_opprf_points(326, 768, 768);
// Settings for PSTY with `n = 2^12`.
// _test_opprf_points(5202, 12288, 12288);
// Settings for PSTY with `n = 2^16`.
// _test_opprf_points(83231, 196608, 196608);
}
}
//
// Benchmarks.
//
#[cfg(all(feature = "nightly", test))]
mod benchmarks {
extern crate test;
use super::*;
use test::{black_box, Bencher};
#[bench]
fn bench_hash_output(b: &mut Bencher) {
let k = black_box(rand::random::<Block>());
let x = black_box(rand::random::<Block512>());
let range = 15;
b.iter(|| super::hash_output(k, x, range));
}
#[bench]
fn bench_hash_output_keyed(b: &mut Bencher) {
let k = black_box(rand::random::<Block>());
let x = black_box(rand::random::<Block512>());
let aes = Aes128::new(k);
let range = 15;
b.iter(|| super::hash_output_keyed(&aes, x, range));
}
#[bench]
fn bench_hash_input_keyed(b: &mut Bencher) {
let k = black_box(rand::random::<Block>());
let x = black_box(rand::random::<Block>());
let aes = Aes128::new(k);
let range = 15;
b.iter(|| super::hash_input_keyed(&aes, x, range));
}
}