1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Implementation of the "Kolesnikov-Matania-Pinkas-Rosulek-Trieu" multi-party private
//! set intersection protocol (cf. <https://eprint.iacr.org/2017/799.pdf>).

use crate::Error;
use itertools::Itertools;
use ocelot::oprf::{KmprtReceiver, KmprtSender};
use rand::{CryptoRng, Rng, RngCore, SeedableRng};
use scuttlebutt::{AbstractChannel, Block, Block512};

/// The party number for each party.
pub type PartyId = usize;

/// Base KMPRT Party.
struct Party {
    id: PartyId,
    opprf_senders: Vec<KmprtSender>,
    opprf_receivers: Vec<KmprtReceiver>,
}

/// KMPRT sender - there can be many of these.
pub struct Sender(Party);

/// KMPRT receiver - there can only be one of these.
pub struct Receiver(Party);

impl Sender {
    /// Initialize a PSI sender.
    pub fn init<C: AbstractChannel, RNG: RngCore + CryptoRng + SeedableRng>(
        me: PartyId,
        channels: &mut [(PartyId, C)],
        rng: &mut RNG,
    ) -> Result<Self, Error> {
        Party::init(me, channels, rng).map(Self)
    }

    /// Send inputs to all parties and particpate in one party receiving the output.
    pub fn send<C: AbstractChannel, RNG: RngCore + CryptoRng + SeedableRng>(
        &mut self,
        inputs: &[Block],
        channels: &mut [(PartyId, C)],
        rng: &mut RNG,
    ) -> Result<(), Error> {
        assert!(self.0.id != 0);

        let s_hat = self.0.conditional_secret_sharing(inputs, channels, rng)?;

        // conditional reconstruction
        let points = inputs.iter().cloned().zip(s_hat.into_iter()).collect_vec();
        self.0.opprf_senders[0].send(&mut channels[0].1, &points, inputs.len(), rng)?;

        Ok(())
    }
}

impl Receiver {
    /// Initialize the PSI receiver.
    pub fn init<C: AbstractChannel, RNG: RngCore + CryptoRng + SeedableRng>(
        channels: &mut [(PartyId, C)],
        rng: &mut RNG,
    ) -> Result<Self, Error> {
        Party::init(0, channels, rng).map(Self)
    }

    /// Send inputs and receive result - only one party should call this.
    pub fn receive<C: AbstractChannel, RNG: RngCore + CryptoRng + SeedableRng>(
        &mut self,
        inputs: &[Block],
        channels: &mut [(PartyId, C)],
        rng: &mut RNG,
    ) -> Result<Vec<Block>, Error> {
        let mut s_hat = self.0.conditional_secret_sharing(inputs, channels, rng)?;

        // conditional reconstruction
        for (channel_num, (_, channel)) in channels.iter_mut().enumerate() {
            let shares = self.0.opprf_receivers[channel_num].receive(channel, inputs, rng)?;
            for (i, share) in shares.into_iter().enumerate() {
                s_hat[i] ^= share;
            }
        }

        let intersection = inputs
            .iter()
            .zip(s_hat.into_iter())
            .filter_map(|(x, s)| {
                if s == Block512::default() {
                    Some(*x)
                } else {
                    None
                }
            })
            .collect_vec();

        Ok(intersection)
    }
}

impl Party {
    fn init<C: AbstractChannel, RNG: RngCore + CryptoRng + SeedableRng>(
        me: PartyId,
        channels: &mut [(PartyId, C)],
        rng: &mut RNG,
    ) -> Result<Self, Error> {
        let mut opprf_senders = Vec::with_capacity(channels.len());
        let mut opprf_receivers = Vec::with_capacity(channels.len());

        for (them, c) in channels.iter_mut() {
            // the party with the lowest PID gets to initialize their OPPRF sender first
            if me < *them {
                opprf_senders.push(KmprtSender::init(c, rng)?);
                opprf_receivers.push(KmprtReceiver::init(c, rng)?);
            } else {
                opprf_receivers.push(KmprtReceiver::init(c, rng)?);
                opprf_senders.push(KmprtSender::init(c, rng)?);
            }
        }

        Ok(Self {
            id: me,
            opprf_senders,
            opprf_receivers,
        })
    }

    /// Share secret shares of zero using OPPRF, returning the xor of the OPPRF outputs -
    /// this phase is common to both the senders and the receiver.
    fn conditional_secret_sharing<C: AbstractChannel, RNG: RngCore + CryptoRng + SeedableRng>(
        &mut self,
        inputs: &[Block],
        channels: &mut [(PartyId, C)],
        rng: &mut RNG,
    ) -> Result<Vec<Block512>, Error> {
        let nparties = channels.len() + 1;
        let ninputs = inputs.len();

        let mut s_hat = vec![Block512::default(); ninputs];

        let s = (0..ninputs)
            .map(|i| {
                let shares = secret_sharing_of_zero(nparties, rng);
                s_hat[i] = shares[self.id];
                shares
            })
            .collect_vec();

        for (channel_num, (other_id, channel)) in channels.iter_mut().enumerate() {
            let points = inputs
                .iter()
                .enumerate()
                .map(|(i, x)| (*x, s[i][*other_id]))
                .collect_vec();

            let bs;
            if self.id < *other_id {
                self.opprf_senders[channel_num].send(channel, &points, inputs.len(), rng)?;
                bs = self.opprf_receivers[channel_num].receive(channel, inputs, rng)?;
            } else {
                bs = self.opprf_receivers[channel_num].receive(channel, inputs, rng)?;
                self.opprf_senders[channel_num].send(channel, &points, inputs.len(), rng)?;
            }

            for (i, b) in bs.into_iter().enumerate() {
                s_hat[i] ^= b;
            }
        }

        Ok(s_hat)
    }
}

fn secret_sharing_of_zero<R: Rng>(nparties: usize, rng: &mut R) -> Vec<Block512> {
    let mut sum = Block512::default();
    let mut shares = (0..nparties - 1)
        .map(|_| {
            let b = rng.gen();
            sum ^= b;
            b
        })
        .collect_vec();
    shares.push(sum);
    shares
}

#[cfg(test)]
mod tests {
    use super::*;
    use rand::Rng;
    use scuttlebutt::{AesRng, SyncChannel};
    use std::{
        io::{BufReader, BufWriter},
        os::unix::net::UnixStream,
    };

    #[test]
    fn test_secret_sharing_of_zero() {
        let mut rng = AesRng::new();
        let nparties = (rng.gen::<usize>() % 98) + 2;
        let shares = secret_sharing_of_zero(nparties, &mut rng);
        assert!(shares.len() == nparties);
        let mut sum = Block512::default();
        for b in shares.into_iter() {
            assert!(b != Block512::default());
            sum ^= b;
        }
        assert_eq!(sum, Block512::default());
    }

    #[test]
    fn test_protocol() {
        let mut rng = AesRng::new();

        let nparties = 3;
        let set_size = 1 << 6;
        let intersection_size = rng.gen::<usize>() % set_size;
        let intersection = (0..intersection_size)
            .map(|_| rng.gen::<Block>())
            .collect_vec();
        let mut set1 = intersection.clone();
        let mut set2 = intersection.clone();
        set1.extend((intersection_size..set_size).map(|_| rng.gen::<Block>()));
        set2.extend((intersection_size..set_size).map(|_| rng.gen::<Block>()));

        // create channels
        let mut channels = (0..nparties)
            .map(|_| (0..nparties).map(|_| None).collect_vec())
            .collect_vec();
        for i in 0..nparties {
            for j in 0..nparties {
                if i != j {
                    let (s, r) = UnixStream::pair().unwrap();
                    let left =
                        SyncChannel::new(BufReader::new(s.try_clone().unwrap()), BufWriter::new(s));
                    let right =
                        SyncChannel::new(BufReader::new(r.try_clone().unwrap()), BufWriter::new(r));
                    channels[i][j] = Some((j, left));
                    channels[j][i] = Some((i, right));
                }
            }
        }
        let mut channels = channels
            .into_iter()
            .map(|cs| cs.into_iter().flatten().collect_vec())
            .collect_vec();

        let mut receiver_channels = channels.remove(0);

        for (i, mut channels) in channels.into_iter().enumerate() {
            // create and fork senders
            let pid = i + 1;
            let my_set = set1.clone();
            std::thread::spawn(move || {
                let mut rng = AesRng::new();
                let mut sender = Sender::init(pid, &mut channels, &mut rng).unwrap();
                sender.send(&my_set, &mut channels, &mut rng).unwrap();
            });
        }

        // create and run receiver
        let mut receiver = Receiver::init(&mut receiver_channels, &mut rng).unwrap();
        let res = receiver
            .receive(&set2, &mut receiver_channels, &mut rng)
            .unwrap();

        assert_eq!(res, intersection);
    }
}