1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
//! This module defines finite fields.
use crate::{
field::polynomial::Polynomial,
generic_array_length::AnyArrayLength,
ring::{FiniteRing, IsSubRingOf},
};
use generic_array::{ArrayLength, GenericArray};
use std::ops::{Div, DivAssign};
/// Types that implement this trait are finite fields.
pub trait FiniteField: FiniteRing + DivAssign<Self> + Div<Self, Output = Self> {
/// The prime-order subfield of the finite field.
type PrimeField: PrimeFiniteField + IsSubFieldOf<Self>;
/// Multiplication over field elements should be reduced over this polynomial.
fn polynomial_modulus() -> Polynomial<Self::PrimeField>;
/// The generator for the multiplicative group.
const GENERATOR: Self;
/// The number of bits in the bit decomposition of any element of this finite field.
///
/// This number should be equal to (for the field $`\textsf{GF}(p^r)`$):
/// ```math
/// \lceil\log_2(p)\rceil \cdot r
/// ```
///
/// See [`Self::bit_decomposition`] for the exact meaning of bit decomposition
type NumberOfBitsInBitDecomposition: ArrayLength<bool> + ArrayLength<F2>;
/// Decompose the given field element into bits.
///
/// This bit decomposition should be done according to [Weng et al., section 5](https://eprint.iacr.org/2020/925.pdf#section.5).
///
/// Let $`p`$ be a positive prime. Let $`r`$ be a positive integer.
/// Let $`m=\lceil\log_2 p\rceil`$, the number of bits needed to represent $`p`$.
///
/// Let $`F = \textsf{GF}(p^r)`$ be the current field (the field represented by `Self`).
///
/// Let $`v`$ be a vector of $`r \cdot m`$ elements of $`F`$.
/// Let $`v = (v_0, v_1, \ldots, v_{rm}) \in F^{rm}`$.
/// We define (don't worry about $`g`$, we're just keeping the syntax of the paper)
/// $`\langle g,v\rangle \in F`$ using the polynomial representation of F, below:
/// ```math
/// \langle g, v \rangle(x) \coloneqq
/// \sum\limits_{i=0}^{r-1} \left( x^i \cdot \sum\limits_{j=1}^{m-1}
/// 2^j \cdot v_{i \cdot m + j}
/// \right )
/// ```
///
/// Let $`f \in F`$.
/// Let $`b \in \{0,1\}^{rm} \subseteq F^{rm}`$ (that is, a 0/1 vector where 0/1 are field
/// elements of $`F`$), such that $`\langle g, b \rangle = f`$.
///
/// Invoking the `bit_decomposition` function on `f` should yield the vector $`b`$ where a 0
/// element of $`b`$ corresponds to `false` and a 1 element corresponds to `true`.
fn bit_decomposition(&self) -> GenericArray<bool, Self::NumberOfBitsInBitDecomposition>;
/// Compute the multiplicative inverse of self.
///
/// # Panics
/// This function will panic if `*self == Self::ZERO`
fn inverse(&self) -> Self;
/// Decompose `self` into an array of `T` elements where `T` is a subfield of `Self`.
///
/// See [`IsSubFieldOf`] for more info.
#[inline]
fn decompose<T: FiniteField + IsSubFieldOf<Self>>(
&self,
) -> GenericArray<T, DegreeModulo<T, Self>> {
T::decompose_superfield(self)
}
/// Create a field element from an array of subfield `T` elements.
///
/// See [`IsSubFieldOf`] for more info.
#[inline]
fn from_subfield<T: FiniteField + IsSubFieldOf<Self>>(
arr: &GenericArray<T, DegreeModulo<T, Self>>,
) -> Self {
T::form_superfield(arr)
}
}
/// The degree, $`r`$ of a finite field.
///
/// Where `Self` is $`\textsf{GF(p^r)}`$
pub type Degree<FE> = DegreeModulo<<FE as FiniteField>::PrimeField, FE>;
/// The relative degree between two Finite Fields.
///
/// Let $`A`$ be a subfield of $`B`$. `DegreeModulo<A, B>` is `DegreeModulo` as defined by
/// [`IsSubFieldOf`].
pub type DegreeModulo<A, B> = <A as IsSubFieldOf<B>>::DegreeModulo;
/// Denotes that `Self` is a subfield of `FE`.
///
/// All finite fields can be written as $`\textsf{GF}(p^r)`$ where $`p`$ is prime.
///
/// Let the finite field $`A`$ denote `Self` and $`B`$ denote `FE`.
///
/// If $`A`$ is a subfield of $`B`$, it's true that
/// 1. When $`A`$ and $`B`$ are written in the $`\textsf{GF}(p^r)`$ form, their primes are equal.
/// 2. $`r_A \vert r_B`$
///
/// Let $`n`$ be $`\frac{r_B}{r_A}`$.
///
/// $`B`$ is isomorphic to the set of polynomials of maximum degree $`n`$ where coefficients are
/// taken from $`A`$. To put it another way, we can represent $`B`$ as vectors containing $`n`$
/// $`A`$ values.
///
/// # Alternatives
/// These methods exist on the _subfield_ type, which is not a natural API. You may prefer using
/// [`FiniteField::decompose`], [`FiniteField::from_subfield`], or the type alias [`DegreeModulo`].
pub trait IsSubFieldOf<FE: FiniteField>: FiniteField + IsSubRingOf<FE> {
/// The value $`n`$ from above.
type DegreeModulo: ArrayLength<Self> + AnyArrayLength;
/// Turn `FE` into an array of `Self`, a subfield of `FE`.
fn decompose_superfield(fe: &FE) -> GenericArray<Self, Self::DegreeModulo>;
/// Homomorphically lift an array of `Self` into an `FE`.
fn form_superfield(components: &GenericArray<Self, Self::DegreeModulo>) -> FE;
}
impl<FE: FiniteField> IsSubFieldOf<FE> for FE {
type DegreeModulo = generic_array::typenum::U1;
#[inline]
fn decompose_superfield(fe: &FE) -> GenericArray<Self, Self::DegreeModulo> {
GenericArray::from([*fe])
}
#[inline]
fn form_superfield(components: &GenericArray<Self, Self::DegreeModulo>) -> FE {
components[0]
}
}
/// A `PrimeFiniteField` is a `FiniteField` with a prime modulus. In this case
/// the field is isomorphic to integers modulo prime `p`.
pub trait PrimeFiniteField:
FiniteField<PrimeField = Self>
+ IsSubFieldOf<Self, DegreeModulo = generic_array::typenum::U1>
+ std::convert::TryFrom<u128>
{
}
#[cfg(test)]
#[macro_use]
mod test_utils;
#[cfg(test)]
macro_rules! call_with_big_finite_fields {
($f:ident $(, $arg:expr)* $(,)?) => {{
$f::<$crate::field::F61p>($($arg),*);
$f::<$crate::field::F64b>($($arg),*);
$f::<$crate::field::F128b>($($arg),*);
$f::<$crate::field::F40b>($($arg),*);
$f::<$crate::field::F45b>($($arg),*);
$f::<$crate::field::F56b>($($arg),*);
$f::<$crate::field::F63b>($($arg),*);
#[cfg(feature = "ff")]
$f::<$crate::field::F128p>($($arg),*);
#[cfg(feature = "ff")]
$f::<$crate::field::F384p>($($arg),*);
#[cfg(feature = "ff")]
$f::<$crate::field::F384q>($($arg),*);
}};
}
#[cfg(test)]
macro_rules! call_with_finite_field {
($f:ident $(, $arg:expr)* $(,)?) => {{
call_with_big_finite_fields!($f$(,$arg)*);
$f::<$crate::field::F2>($($arg),*);
}};
}
macro_rules! field_ops {
($f:ident $($tt:tt)*) => {
crate::ring::ring_ops!($f $($tt)*);
$crate::ops::binop!(Div, div, std::ops::DivAssign::div_assign, $f);
$crate::ops::assign_op!(DivAssign, div_assign, $f);
impl<'a> std::ops::DivAssign<&'a $f> for $f {
fn div_assign(&mut self, rhs: &Self) {
*self *= rhs.inverse();
}
}
};
}
/// Bit decomposition of `bits` into an array.
pub(crate) fn standard_bit_decomposition<L: ArrayLength<bool>>(
bits: u128,
) -> GenericArray<bool, L> {
let mut out: GenericArray<bool, L> = Default::default();
for (i, dst) in out.iter_mut().enumerate() {
*dst = (bits & (1 << (i as u128))) != 0;
}
out
}
mod f2;
pub use f2::F2;
mod f128b;
pub use f128b::F128b;
mod f64b;
pub use f64b::F64b;
mod small_binary_fields;
pub use small_binary_fields::{F40b, F45b, F56b, F63b, SmallBinaryField};
mod f61p;
pub use f61p::F61p;
#[cfg(feature = "ff")]
mod prime_field_using_ff;
#[cfg(feature = "ff")]
pub use prime_field_using_ff::{F128p, F256p, F384p, F384q, F400p, Fbls12381, Fbn254};
#[cfg(feature = "ff")]
mod f2e19x3e26;
#[cfg(feature = "ff")]
pub use f2e19x3e26::F2e19x3e26;
pub mod polynomial;
pub mod fft;