Module scuttlebutt::field
source · Expand description
This module defines finite fields.
Modules§
- Various number theoretic utility functions used in the library.
- This module defines polynomials (and their operations) over finite fields.
Structs§
- A field element in the prime-order finite field $\textsf{GF}(2).$
- An element of the finite field $
\textsf{GF}(2^{40})
$ reduced over $x^{40} + x^5 + x^4 + x^3 + 1
$ - An element of the finite field $
\textsf{GF}(2^{45})
$ reduced over $x^{45} + x^{28} + x^{17} + x^{11} + 1
$ - An element of the finite field $
\textsf{GF}(2^{56})
$ reduced over $x^{56} + x^8 + x^3 + x^2 + 1
$ - A finite field over the Mersenne Prime 2^61 - 1
- An element of the finite field $
\textsf{GF}(2^{63})
$ reduced over $x^{63} + x + 1
$ - An element of the finite field $
\textsf{GF}({2^{64}})
$ reduced over $x^{64} + x^{19} + x^{16} + x + 1
$. - An element of the finite field $\textsf{GF}(2^{128})$ reduced over $x^{128} + x^7 + x^2 + x + 1$
Traits§
- Types that implement this trait are finite fields.
- Denotes that
Self
is a subfield ofFE
. - A
PrimeFiniteField
is aFiniteField
with a prime modulus. In this case the field is isomorphic to integers modulo primep
. - A GF(2) extension field such that:
Type Aliases§
- The degree, $
r
$ of a finite field. - The relative degree between two Finite Fields.